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1 Introduction

Digital access to healthcare services has been argued to have the potential to bring large productivity

gains in healthcare (e.g., Miller and Tucker, 2011; Lee et al., 2013; Agha, 2014; McCullough et al., 2016).

Some of the largest gains may come in lower-income country settings where physical infrastructure

provision is relatively low, and there are long-standing issues and disparities in access to services and

health outcomes between areas and communities (Barber et al., 2007; Van de Poel et al., 2007). But

whether digital access can be a substitute for physical resources is as yet unresolved (Kahn et al., 2010;

Chib et al., 2015; Kickbusch et al., 2021). This paper seeks to address one part of this important issue:

whether internet access can improve health outcomes. We exploit the biggest health shock in recent

years to explore the effect of digital access on health outcomes in a developing country setting.

Our setting is the COVID pandemic and its spread in Indonesia. Our question is whether access

to the internet had an impact on the number of COVID cases.1 This setting has several advantages.

First, the COVID pandemic was a worldwide shock for which there was little or no preparedness. Thus,

infrastructure investment was not endogenous due to the pandemic. Second, Indonesia is the 6th most

populous country in the world, and both mobile internet access and COVID cases displayed considerable

variation across geographical space (c.f. Appendix Figure A.1). Third, the contagious nature of COVID

and the global nature of the pandemic meant that COVID cases were well recorded (by international

non-profit agencies and the statutory authorities in Indonesia) and timely. This contrasts with other

health outcomes, which may be poorly recorded, only recorded in surveys, or take time to improve

after medical intervention. Fourth, the rate of COVID infections in Indonesia was high, so data can be

analyzed at a relatively small spatial level without encountering measurement issues, which is rare for

developing countries and other diseases.

This study provides empirical evidence of the role of internet access during the COVID-19 pandemic

by exploiting sub-national data on mobile broadband and COVID-19 spread in Indonesia. At the begin-

ning of 2023, Indonesia was an epicenter of the Southeast Asian pandemic, with a very high number of

confirmed cases relative to its peers in the region. Depicted in Figure 1, the association between COVID

cases and internet access is clearly visible across countries (left panel) and within Indonesia across re-

gencies (of which there are roughly 500, right panel).2 The left panel shows that Indonesia stands out

among Asian countries with a high number of cases but below-average mobile internet access. In the

right panel, regencies are grouped by 20-percentile bins to display the average number of cases within

each, revealing a strong and significant negative association across the distribution of internet coverage.3

Our empirical strategy builds on the regional variation in 3G mobile broadband access across regencies

in Indonesia in December 2019 (just before the outbreak), coupled with an instrumental variable [IV]

approach that uses the incidence of lightning strikes in the same month as an exogenous shock to the

existing connection network (building on Manacorda and Tesei, 2020; Guriev et al., 2021; Do et al., 2023).

We interpret this as an exogenous shock to the accessibility of information in the critical early stage of the

pandemic. Additionally, our cross-sectional IV implementation adjusts for a host of potential confounders

by including an extensive set of local information often absent in developing country contexts.

We find that access to 3G internet played a vital role in reducing the transmission rate of COVID-

19 in Indonesia. Our findings imply that the number of COVID cases could have been reduced by

approximately 45% if area connectivity were enhanced by one standard deviation (30% coverage). This

1In developing countries with often underdeveloped healthcare systems, internet access is likely crucial in reducing the
spread of COVID-19. Yet, the World Bank reports that only 19.1% of the population in low-income countries has access
to internet, compared to 87.7% in high-income countries (Kelly and Rossotto, 2011).

2The regional government in Indonesia is organized into provinces, with regencies (kabupaten) and cities (kota) nested
within provinces at the same level. Our analyses are at this level. We also account for the provincial level as it is the
primary level for health policy-making.

3Alternative representations (Cattaneo et al., 2024) show similar conclusions, which are available from authors.
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reduction is remarkable, particularly when compared to the effectiveness of other non-pharmaceutical

interventions (NPIs) in reducing COVID-19 transmission, such as social distancing and wearing masks

(Courtemanche et al., 2020; Leech et al., 2022).

We also assess the evolution of the long-run effect of not having access to the internet early on in the

pandemic and find that the difference in growth rates diverges early on and persists, meaning that the

areas with access grew apart over time. We do not have direct data on mechanisms, but we examine the

heterogeneous effects of education level, industry structure, rurality, and economic development. We find

that the internet’s benefits in mitigating the spread of COVID-19 are less pronounced in settings with a

large number of uneducated individuals and where agricultural activities predominate. While graduate

education seems to matter less than basic literacy, regions with a higher proportion of individuals ca-

pable of teleworking exhibit a more significant reduction in COVID-19 transmission. This underscores

the role of information in facilitating social distancing practices among those who can work remotely.

Interestingly, these differences are distinct from those of urbanity or socio-economic status of the area.

Our findings suggest that 3G internet access during the pandemic likely facilitated critical awareness

and adoption of protective measures, emphasizing the importance of enhanced digital connectivity and

literacy as key components of public health strategies, furthermore, those with greater scope to adjust

appear to benefit more.

Our study builds upon the extensive literature that examines the crucial role of information dissemi-

nation in enhancing health awareness and facilitating positive health outcomes in low- and middle-income

countries. The transformative potential of accessible, timely, and relevant information has been high-

lighted, with evidence suggesting its ability to empower communities and individuals to make informed

decisions regarding their health and well-being (Jalan and Somanathan, 2008; Aker and Mbiti, 2010;

Dupas, 2011). Several factors have been identified as contributing to an effective response to pandemics.

Providing information on preventive measures has proven effective in overcoming prevention barriers

among impoverished households in Africa, particularly in the fight against malaria (Cohen and Dupas,

2010). In contrast, efforts to empower women and girls or enhance educational outcomes do not necessar-

ily result in improved preventive behaviors (Behrman, 2015; Duflo et al., 2015). Within the COVID-19

context, Chang et al. (2022) and Bargain and Aminjonov (2020) showed that countries with higher levels

of political trust and social cohesion were more successful in implementing effective pandemic response

strategies. Mendolia et al. (2021) found a significant correlation between government dissemination of

pandemic information and reduced human mobility. These findings underscore the importance of effec-

tive communication and transparency in preventing and mitigating the spread of infectious diseases such

as COVID-19. Despite the underlying mechanism of these measures, which is often internet access, we

are (to our knowledge) the first to assess the direct impact of internet access on the spread of COVID-19

in a low-resource setting.

We contribute to the broader literature on the role of the internet in improving health outcomes.

Research has shown that the internet can increase the demand for healthcare services (Suziedelyte, 2012;

Amaral-Garcia et al., 2022), improve self-reported health status (Lam et al., 2020; Hunsaker et al.,

2021; Parys and Brown, 2023), and affect psychological well-being (McDool et al., 2020; Golin, 2022).

Particularly in developing countries, internet access has been linked to better health outcomes, especially

in low-income and rural communities. For example, Chen and Liu (2022) found that greater internet

accessibility decreased the prevalence of overweight individuals in China, facilitating more engagement

in health-related activities such as searching for health information and communication with healthcare

providers. Collectively, these studies suggest that access to the internet can play a crucial role in

improving health outcomes, a factor that becomes even more critical during a pandemic.

Finally, our paper intersects with the broader discourse on the impacts of infrastructure on health

outcomes. Infrastructure, such as roads and railways, is traditionally viewed as a facilitator of improved
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access to healthcare services, thus potentially enhancing public health (Adhvaryu and Nyshadham, 2015;

Aggarwal, 2021). However, such physical infrastructure may increase the spread during pandemics via

increased physical contact across areas. Digital infrastructure presents a more adaptable and potentially

cost-effective alternative by facilitating telemedicine and supporting remote working. Our examination

of heterogeneity in the effects of internet access contributes to the literature on differential impacts across

various groups, including by education and occupation (Hjort and Poulsen, 2019; Couture et al., 2021;

Zuo, 2021).

2 Data

We start by describing our data sources; more information can be found in Appendix Table A.1.

2.1 Main data

COVID-19 data

We used COVID-19 data provided by the Indonesian COVID-19 Task Force, established in March 2020,

to manage, control, monitor, create, and implement strategic policies for the acceleration of the na-

tional COVID-19 response. The dataset includes a range of measures at the regency (district) level,

such as the weekly number of COVID-19 cases and the incidence rate per 100,000 population. Our

unit of analysis is the second-level administrative divisions comprising 514 units: 416 regencies and 98

cities in Indonesia (we refer to these as regencies in what follows); these are located in 38 provinces of

Indonesia. We aggregated the weekly data at this regency level, covering 1 March 2020 to 18 February

2023.4 Appendix Figure A.1 presents the fluctuations in COVID-19 transmission rates across regencies

in Indonesia, showing substantial variations across different areas. Populated regions of the country,

such as Jakarta and Surabaya, report significantly higher infection rates than their less-populated, rural

counterparts, as evidenced by the number of confirmed cases.

Internet data

Following the literature cited above, we concentrate on the coverage of the 3G network.5 We utilize

digital maps of global mobile network coverage provided by Collins Bartholomew’s Mobile Coverage

Explorer. The data contains information about signal coverage at a 1-by-1-kilometer grid level.

We use data from December 2019, just before the pandemic started in Indonesia. Our measure of

internet access follows previous studies (Manacorda and Tesei, 2020; Guriev et al., 2021; Do et al., 2023).

First, we determine if a particular 1-by-1-kilometer grid has a 3G (or 2G) signal. We then compute the

proportion of areas within each regency with network access by evaluating the grid cells corresponding

to that regency. A visual example is provided in Figure 2. This does not provide a direct measure of

internet usage. Instead, it provides a measure of potential access, which is arguably less endogenous

to people’s preferences and other behaviors. Appendix Figure A.1 shows access to 3G is widespread

4In Figure A.2, we plot the aggregated number of cases at the national level using data from both the Government
of Indonesia and Johns Hopkins University (Dong et al., 2022). Overall, both sources demonstrate a similar trend in the
emergence of COVID-19 in Indonesia, particularly during the early stages of the pandemic. However, the local data in
our analysis excludes unidentified areas; therefore, the reported figures are lower than the national trend. The areas not
covered in our data comprise 9.5% of the Indonesian population. We conduct several robustness tests to ensure that this
issue does not compromise the validity of our findings.

5The adoption of 3G technology marks a significant milestone in the evolution of mobile communication, enabling users
to access and interact with online content, including social media, much more efficiently. The more basic 2G networks
are limited to voice calls, SMS text messaging, and multimedia messages (MMS). During the COVID-19 pandemic, 2G
networks, therefore, may be limited in their utility for public health communication and remote services, while 3G networks
significantly enhance the capability for timely and effective dissemination of health advisories, telehealth consultations, and
support for remote education and work.
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in highly developed regions such as Sumatra and Java. In contrast, internet coverage in the Eastern

areas, such as Maluku and Papua, is relatively low. Analogous to the number of cases above, the figure

indicates substantial variations in access to mobile internet.

Lightning strike data

As an instrument for internet coverage, we employ data on lightning strikes sourced from the World

Wide Lightning Location Network (WWLLN) dataset (Kaplan and Lau, 2021). This dataset provides

the exact coordinates and time of all detected cloud-to-ground lightning strikes for the entire globe.6

We aggregate these data from the grid level to the regency level. Our measure of lightning strikes is

the mean stroke power in megawatts (MW), aggregated at the monthly basis. This measure provides

a unique perspective on the intensity and energy of lightning activity, which we hypothesize to be a

relevant proxy for assessing internet coverage in the region (discussed in detail in Section 3).

Following previous studies, we control for weather conditions using temperature and precipitation

from ERA5, which is the fifth generation of reanalysis dataset produced by the European Centre for

Medium-Range Weather Forecasts (ECMWF) (Manacorda and Tesei, 2020; Do et al., 2023). Reanalysis

data, which combine information from ground stations, satellites, weather balloons, and other inputs

with a climate model to estimate weather variables across a grid, are particularly valuable in settings

where weather stations’ spatial and temporal coverage is limited, as is often the case in many developing

countries (Dell et al., 2014). Unlike traditional weather station data, reanalysis data cover a larger

geographical area and are available over an extended period. Furthermore, these data may resolve

issues related to endogeneity concerns associated with weather station placement and variations in the

quality and quantity of data collection (Auffhammer et al., 2013; Donaldson and Storeygard, 2016). We

aggregate monthly temperature (measured in Celsius) and precipitation (measured in millimeters) at the

regency level for Indonesia using the inverse-distance weighting approach (Deschênes and Greenstone,

2011).

The right panel of Figure 2 presents an example of the global distribution of lightning strikes. Two

observations are noteworthy. First, lightning strikes are predominantly concentrated in countries around

the equator, including Indonesia, aligning with the geographical predisposition to higher thunderstorm

activity in these regions. Second, even within Indonesia, there is significant variation in lightning strike

frequency (see also Appendix Figure A.1), providing further empirical support for the use of lightning

strikes as an instrument in our analysis.

2.2 Covariates

Internet access is associated with local circumstances that might also be associated with the spread of

the pandemic. Data on these can be hard to obtain in developing country settings. Indonesia, however,

is an outlier, allowing us to collect various characteristics which we now discuss.7

Demographics

To account for demographic characteristics, we aggregate data at the regency level from multiple sources.

First, we use our COVID-19 database for data on population density and counts at the regency level.

Second, we supplement this data with several key indicators from the 2010 Indonesian population census

6The raw lightning observations are recorded with latitude, longitude, and time stamps (see Kaplan and Lau, 2021).
Individual lightning stroke observations are summed on a geographic grid at the desired spatial resolution of 5km, which
serves as our primary measure. For robustness, we also employ the 10km measure grid data to capture any spatial effects.

7The authors thank the ADB team for supporting this data collection.
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conducted by Statistics Indonesia in May and June 2010, which surveyed 237.6 million people. Specifi-

cally, we include the proportion of the population aged 65 and older, the proportion of individuals without

any formal education, the proportion of individuals with graduate degrees, the average household size,

and the proportion of the population living in rural areas. We follow Bazzi et al. (2019) and Alesina

and La Ferrara (2005) to calculate the ethnic fractionalization and polarization at the regency level.8

These variables are included to capture the potential impact of social cohesion and cultural diversity

on the effectiveness of public health responses and the spread of COVID-19, as these factors can influ-

ence community compliance with health directives and the dissemination of information within diverse

populations.

To measure the characteristics of the workforce in the pre-COVID-19 period, we utilize data from the

National Labor Force Survey (SAKERNAS) for 2019. SAKERNAS is a survey designed specifically to

gather employment data and is representative at the province level (Suryadarma et al., 2007). We focus

on several indicators, including the proportion of workers in agriculture, the share of workers with a long

commute (more than 1 hour), and those who use public transportation. Additionally, we construct an

index to assess the ability to work from home (also known as telework ability) by sector (see Dingel and

Neiman, 2020; Asian Development Bank, 2021).

Healthcare availability

The healthcare data utilized in our analysis are derived from Open Street Map (OSM), an open-source,

collaboratively constructed global mapping project that provides detailed geographic data quantifying

the number of healthcare facilities across various geographic locations, specifically clinics (that provide

outpatient care) and hospitals (which provide inpatient care, specialized surgeries, and emergency ser-

vices). These data provide a comprehensive spatial distribution of healthcare infrastructures across

Indonesia at the regency level. We also incorporate local healthcare spending data at the same level.

Economic status

Perhaps the most critical factors tying internet access to the pandemic spread are those associated

with economic activity. To estimate local economic activity in Indonesian regencies, we utilize satellite

nightlight data from the Visible Infrared Imaging Radiometer Suite (VIIRS) administered by the National

Oceanic and Atmospheric Administration (NOAA) (see, e.g., Henderson et al., 2012; Hodler and Raschky,

2014; Martinez, 2022).9 We calculate the nightlight density for all regencies by aggregating satellite

images from daily grids to yearly data.10 We also use the human development index compiled for

Indonesia in 2019, capturing economic status, human well-being, and flourishing more broadly, at the

regency level.

3 Empirical model

We investigate the effects of internet access, proxied by pre-pandemic (t0) 3G availability (G3accessr,t0),

on reducing COVID-19 cases at the regency level r in Indonesia, at different stages of the pandemic. We

8The fractionalization and polarisation indices are calculated using the following formulas: fractionalization = 1 −∑J
j=1 π

2
j and polarisation = 4

∑J
j=1 π

2
j (1− pj), where pj is the share of the ethnic group j.

9In Indonesia Gibson et al. (2021) find a positive relationship between regency-level VIIRS data and gross domestic
product (GDP).

10Atmospheric conditions may impact the ability of satellite sensors to capture night lights. We follow the Copernicus
program’s recommendation to exclude results from pixels with above 10 percent cloud fraction by performing cloud masking
to address this. For more details, see: https://atmosphere.copernicus.eu/flawed-estimates-effects-lockdown-measures-air-
quality-derived-satellite-observations?q=flawed-estimates-effects-lockdown-measures-air-quality-satellite-observations
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assess the over-time association between COVID-19 outcomes and pre-pandemic access to the internet

via

E(yr,t|X) = exp(αt + τtG3accessr,t0 + x′
r,t0βt + δp,t), (1)

where yr,t represents the cumulative cases in regency (or city) r at time t, adjusted per 10,000 population.

We employ a Poisson specification (Chen and Roth, 2023).11 Because our model is cross-sectional –

emphasizing the critical role of information availability early in the pandemic – we control for the large

set of covariates (x′
r,t0) discussed above, at the regency level, measured before the onset of the pandemic.

Additionally, we include fixed effects for provinces (δp, of which there are 38) to mitigate unobservable

factors affecting our outcomes at the province level (the main level of local policymaking). Finally,

we employ population weights to allow for areas with larger populations to get higher weights – but

show that these are immaterial to our results – and use robust standard errors to account for potential

heteroskedasticity.

As with any other infrastructure, the expansion of mobile network coverage is likely to be influenced by

endogenous factors. For example, network service providers tend to prioritize areas with high economic

activity and potential demand, which may be associated with other factors that could influence the

spread of the pandemic. As a result, despite including a large set of covariates, the simple conditional

association between mobile internet penetration and COVID-19 spread might not accurately measure

the causal impact.

To address this, we use an instrumental variable strategy using lightning strikes (based on Andersen

et al., 2012; Manacorda and Tesei, 2020; Guriev et al., 2021; Do et al., 2023). The underlying ratio-

nale is that lightning strikes can cause significant damage to digital infrastructure, leading to localized

black-outs. This IV is ideally suited to our context, as countries around the equator experience a high

frequency of lightning strikes (c.f. Figure 2). This is compounded by the fact that there are fewer towers

than in more developed countries to compensate for those affected by lightning. However, lightning

strikes can also impact other types of infrastructure, such as power grids, telecommunications, and emer-

gency services, which could indirectly influence the spread of COVID-19 during the pandemic. These

infrastructural components are vital for disseminating information, maintaining healthcare services, and

coordinating pandemic response efforts. While the exclusion condition is not directly testable, we miti-

gate against potential confounding factors in our models, by including controls for weather conditions,

health facilities, and economic activities. For example, adverse weather at the onset of the pandemic may

lead people to stay indoors more, even without information about the new pathogen. By controlling for

temperature and precipitation, we ensure comparisons are made between regions with similar weather

conditions, some of which experience lightning activity and others that do not.

We implement a Poisson-IV model (as Graff Zivin et al., 2023), with first stage:

G3accessr,t0 = β + γ1f(Lightningr,t0) + γ2temperaturer,t0 + γ3precipitationr,t0 + x′
r,t0β + δp + εr,t0 (2)

where the instrumental variable, Lightningr, is measured by the average lightning stroke power at

the regency level in December 2019, visualized in Appendix Figure A.4. We additionally provide two

alternative IVs based on de-trended (residualized) lightning strikes, using larger regions R - 10km, i.e.,

Lightningr,t0 = γLightningR,t0 + εr,t0 and over time, the whole year of 2019, i.e. Lightningr,t0 =

γLightningr,T0
+εr,t0 , thus using only variation in excess of the larger area and yearly lightnings strikes.

Tailored to our context of a developing country near the equator, we further assess robustness using

11This approach accounts for the heavily skewed nature of the case data (cf. Appendix Figure A.3). To verify the
robustness of our findings, we explore alternative model specifications, including log-transformed OLS and negative binomial
regressions.
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humidity and the number of cell towers.

In our primary analysis, we focus on the last date in our dataset (i.e., 18 February 2023) and conduct

a single cross-sectional regression.12 However, to capture the evolution of the lightning-induced lack

of internet access over various stages of the pandemic leading up to our end-line date, we adjust the

cumulative number of cases per population at different stages of the pandemic t (as in Kunz and Propper,

2022).

We explore the heterogeneous effects of internet access on COVID-19 transmission by considering

a range of local-area characteristics, including educational level, labor force characteristics, rurality,

and economic development. To this end, we modify Equation (1) to include interaction terms between

internet access and these demographic and socio-economic variables:

E(yr,t|X) = exp(αt + τtG3accessr,t0 + τxt G3accessr,t0 × 1[x ≥ medx] + x′
r,t0βt + δp,t) (3)

1[x ≥ medx] represents an indicator for whether variable x—for instance, the share of population

working in agriculture—is greater than or equal to its median. We similarly use f(Lightningr,t0)× 1[x ≥
medx] as an additional instrument for exploring these interactions.

4 Results

By 18 February 2023, Indonesia had recorded a cumulative total of approximately 6.5 million confirmed

COVID-19 cases.13 These cases were disproportionately concentrated in areas with limited to no mobile

internet access. At the median split of 3% of exposure to the internet (which is notably low), regions

with minimal to no internet exposure accounted for 4 million cases, compared to 2.5 million in regions

above the median exposure. This stark difference corresponds to a 37.5% decrease. Disaggregating this

disparity at the regency level, which aligns with our estimation specification, the difference in the mean

case count is 18,000 for areas with low access versus 7,500 for areas with high access, representing a 58%

decrease. Figure 1, panel B, demonstrates that this gap is not solely attributable to binary distinctions

of no access versus full access but rather decreases in a more linear fashion.

The results of the unconditional effects of internet access on COVID-19 spread using our specification

1 are shown in Appendix Table B.1. The association is 1.495, corresponding to a 77% reduction in cases.

This difference could be influenced by various factors, including rurality and economic activity. We

examine the conditional association in Table 1. Panel A of this table illustrates the impact of 3G

internet access on the COVID-19 transmission rate.14 The conditional association, presented in Column

1 and adjusted for covariates likely to affect the pandemic spread and province-level fixed effects, reveals

a large, negative, and statistically significant coefficient. This implies a 48% reduction in cases when

moving from no internet exposure to full exposure (i.e., exp(−0.66)−1). For a typical change in exposure

(one standard deviation, approximately 30%), this corresponds to a 24% decrease.

Next, we address the potential endogeneity between internet access and COVID-19 transmission rates.

The reduced form leveraging lightning strikes as an exogenous factor affecting internet connectivity is

presented in Column 2 of Table 1. The coefficient indicates a significant positive association between

lightning strikes and COVID-19 cases. This association conditions on the full battery of covariates,

including economic status and weather conditions in the local region; thus, lightning strikes are arguably

unlikely to affect COVID-19 cases through channels other than internet access. Consequently, we use

lightning as the instrument in the Poisson-IV model in Column 3. The first-stage results are compellingly

12Hatte et al. (2021) also used this approach cross-sectionally to identify a specific point in time/news.
13See: https://www.statista.com/statistics/1103469/indonesia-covid-19-total-cases/
14Appendix Table B.1 provides a detailed step-wise inclusion of these factors.
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strong, aligning with findings from previous studies. The association between lightning strikes and

internet access is highly significant, with an F-statistic of 61. The estimated impact of a one standard

deviation increase in internet exposure is a reduction of 45%. Thus, lifting the areas with very low

exposure above to 34% coverage would imply a reduction in 8,100 cases (from 18,000) at the mean

and 1.8 million cases across the population (from 4 million). The IV results imply that the conditional

association is biased towards zero. This is consistent with any explanation where any unobserved factor

x is positively (or negatively) correlated with the internet but negatively (or positively) correlated with

COVID-19 cases. For example, unmeasured local factors like political efficiency, which could enhance

internet accessibility while mitigating case numbers, might explain the observed pattern.

In Columns 4 and 5, we explore alternative implementations of the IV by using detrended lightning

strikes. In Column 4, we account for lightning activity in the region before December 2019, using the

anomaly of strikes in that month. Analogously, in Column 5, we assess the anomaly of strikes relative

to a larger area, aiming to address potential spill-over effects. Although the magnitude of the effect

size varies across these specifications, our core finding remains robust: internet access has a strong and

significant impact on mitigating the spread of COVID-19.

Evolution over time

To examine the impact of internet access across different stages of the pandemic, including the emergence

of new variants and vaccine rollouts, we estimate the model for cumulative cases at various pandemic dates

up to February 2023. Figure 3 displays these temporal dynamics, with the final coefficients corresponding

to those in Table 1, Columns 1 and 3. Notably, the disparity in COVID-19 cases between areas with

and without internet access began to diverge early in the pandemic, with subsequent growth rates

stabilizing.15 This pattern indicates that the case levels continued to diverge in a consistent manner,

unaffected by new variants or other developments over three years, suggesting a critical role for initial

information access.

Robustness checks

As in many developing country settings, there are issues with missing values. Although the satellite-

based internet measures and the high-quality COVID data are largely complete, some of the covariates we

include at the regency level contain missing values. We address this issue in Appendix Table B.1, columns

8 and 9. Our approach involves setting the missing values to zero and incorporating corresponding dummy

indicator variables. This has a negligible effect. Additionally, we apply the multiple imputation approach

of missing covariates from Rubin (1996). Our results are virtually unchanged.

In Table B.2, we conduct a variety of robustness checks to address general estimation issues, using

Poisson regressions that are not instrumented. First, we validate our Poisson model specification by

showing that log-transformed and negative binomial models yield similar results (Columns 2 and 3).

Next, we evaluate alternative 3G measures: raw 3G data without extrapolation for areas with missing

data (Column 4) and setting missing 3G data to zero while adding a dummy indicator for these values

(Column 5). These alternative measures suggest a larger effect of the internet on COVID-19 cases.16

Next, employing unweighted regressions reveals larger coefficients and marginal effects for a one standard

deviation change, reinforcing our findings. We also address the challenge of missing COVID-19 data for

10 regencies, applying zero imputation for these and performing a comprehensive imputation for all

15This is consistent with restrictions and realized reductions in mobility early on in the pandemic (c.f. Figure A.5).
16We also estimated the effect of access to only 2G internet. We found minimal effects on COVID-19 transmission. This

is as expected, as 2G primarily supports basic services (.e.g. SMS and voice calls). In contrast, 3G facilitates the more
advanced data services that are required to disseminate health information.
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values (including COVID-19 cases, internet, and lightning strikes) using Rubin (1996)’s method. The

latter technique yields very little alteration in the estimates (Columns 6 and 7).17

Table B.3 presents results of other robustness tests, with Poisson results displayed in the top panel

and IV-Poisson results in the bottom panel. We undertake additional robustness checks to account for

factors that may be particularly relevant in our context, such as the actual internet accessibility and

infrastructure characteristics. We start with an alternative measure of internet access that considers

the population within the coverage area, not just the presence of a signal (Column 2).18 While this

population-based approach gives an alternative view of exposure, it may introduce endogeneity—for

example, if individuals most benefiting from internet access gravitate towards areas closer to towers.

Therefore, our preference is the non population-weighted measure of access. Next, we further control

for humidity (via temperature and precipitation interaction), a critical factor in the tropics influencing

both lightning occurrence and severity, and, by extension, internet service quality and virus transmission

(Column 3). Column 4 includes controls for the number of cell towers in the area, reflecting the extent of

mobile network infrastructure. In developed countries, tower density likely precludes significant variation

in the instrument. However, sparse tower distribution in our setting means lightning can severely disrupt

internet access. Finally, we also repeat the residualized instrumental variables for the number of towers

in the area. Across these tests, our findings remain stable, showing that our main conclusions about the

role of the 3G internet in reducing COVID-19 spread are highly robust.

Heterogeneity

We have established a robust and consistent relationship between internet access and reducing COVID-19

transmission. We now examine whether certain areas derived greater benefits from internet exposure than

others. We examine the differential effects of internet access on COVID-19 transmission across population

educational levels, labor force characteristics, urbanicity, and economic activity. Our approach utilizes

regressions in the form of Equation (3). Figure 4 presents the coefficient estimates for these interactions

(other estimates are in Appendix Table B.4).

Two findings emerge as particularly significant. First, our analysis reveals the benefits of internet

access on COVID-19 transmission are more pronounced among populations with higher educational

levels. Such populations may be more receptive to the emergence of new information via 3G, which

is often text-based. Based on the median split of the local population with no education versus some

education, the difference is both highly significant (p=0.022) and large in magnitude. This difference,

coupled with the statistically insignificant difference for higher education, suggests that basic literacy is

required to derive benefits.

Next, we explore variations in industry structure. Regions with a higher potential for remote em-

ployment (telework) exhibit greater benefits from internet access (p=0.069). The ability to telework has

been essential for containing COVID-19’s spread, as it reduces the necessity for commuting and face-

to-face interactions, thereby decreasing transmission risks. Furthermore, telework often requires higher

digital literacy, potentially leading to increased awareness and compliance with public health guidelines

disseminated through digital channels. On the other hand, a large agricultural sector is associated with

diminished benefits from internet access (p=0.065), likely due to the infeasibility of remote work in such

settings. While these findings should not be interpreted causally, given the probable high correlation

between labor force characteristics and educational levels, they are consistent with the notion that lever-

aging timely information for pandemic mitigation also requires the local population to be able to adapt

17The distinction in the last two approaches stems from our ability to observe province and population for some records,
while for others, we impute population (see Column 8).

18This measure, illustrated in Figure 2, aggregates all grids with internet access, regardless of the population density in
each grid.
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to shelter-in-place and social distancing policies/recommendations.

Finally, we investigate whether the observed effects associated with educational level and labor

force characteristics merely reflect underlying difficulty density or economic development. Interest-

ingly, our findings indicate no such difference. Moreover, these factors seem to operate in opposing

directions: regions with higher urbanicity derive more benefit (despite potentially increased population

density), whereas areas with greater economic development—proxied by nightlight intensity—experience

marginally (and insignificantly) fewer benefits.19

5 Conclusion

We assess the relationship between internet coverage and health outcomes, leveraging the COVID-19

pandemic as an unexpected health shock to examine the role of digital connectivity in mitigating its

spread. Our setting is Indonesia, a country characterized by varied access to broadband services and

varying rates of COVID-19 transmission. Its geographical location, particularly susceptible to frequent

lightning strikes, provides a unique context for employing an IV framework to isolate the effect of internet

access on public health outcomes. Utilizing rich data at the subnational level we find that access to 3G

broadband internet reduced COVID-19 cases at the local level by approximately 45%. This implies that

improving connectivity by 30% (1 sd) could have prevented 1.8 million cases over the course of the first

three years of the pandemic. This would essentially have eradicated the gap between Indonesia and its

peers, such as the Philippines, Thailand, and Japan (c.f. Figure 1). Moreover, the effect observed in our

study is large compared to the effectiveness of other non-pharmaceutical interventions (NPIs) intended

to reduce COVID-19 transmission. Although the impact of specific NPIs varies, the 45% reduction

attributed to enhanced internet access is on par with, or even surpasses, the outcomes associated with

measures such as social distancing, mask-wearing, and travel restrictions (c.f. VoPham et al., 2020; Leech

et al., 2022; Kwok et al., 2021). We also find regions with higher literacy levels and greater capacity for

telework experienced larger benefits from access, emphasizing the role of educational and infrastructural

readiness in maximizing the public health advantages of digital connectivity. Finally, our finding of a

sustained divergence in growth rates between regions with and without early internet access demonstrates

the ongoing importance of internet access in curbing virus spread. This enduring effect, evident despite

potential other influences like vaccine distribution or initial data inconsistencies, reaffirms the important

role of digital connectivity in bolstering public health interventions amid evolving challenges, such as

new variants and changing guidelines.

19Exploratory analyses indicate significant benefits in relatively light-poor urban areas. But dividing the data by two
median splits leads to a limited number of observations, so results should be interpreted with caution. Results available on
request.
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Figures & Tables

Figure 1: Mobile broadband access and COVID-19 cases - Asia region and within Indonesia

Notes: COVID-19 case data were measured as of February 18th, 2023, and adjusted for population. Mobile broadband
speed (3G access) measurements were taken in 2019 - before the pandemic started. In the left panel, the data were based
on 32 countries in Asia for which data were available. The right panel shows an average number of cases from Indonesia’s
454 regencies (districts) aggregated to 20 percentiles (several regencies have no access or full access, which are subsumed in
the lowest and highest percentile), the size of the bubbles indicates the population living in these regencies, line denoting
the population-weighted linear fit, with a correlation coefficient of -1.12 (standard error 0.15) and an R2 of 89%. Sources:
COVID-19 global data from the Johns Hopkins cross-national COVID-19 file; district-level data for Indonesia from the
Indonesian COVID-19 Task Force. Mobile internet data from Collins Bartholomew’s GSMA Mobile Coverage Explorer
database, own calculations.
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Figure 2: Regency boundaries in Indonesia and global lightning strike distribution

Notes: The left panel represents the regency boundary in Indonesia and provides an example of 3G grid data. See Appendix

Figure A.1 for the complete distribution. The right panel displays world lightning strike data accessed on March 14th,

2024. Sources: Mobile internet data from Collins Bartholomew’s GSMA Mobile Coverage Explorer database. Lightning

strike data is from the World Wide Lightning Location Network (WWLLN), own representation.
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Figure 3: Mobile broadband access and COVID-19 cases – Effects throughout the pandemic

Notes: Figure presents regression coefficients of regressions (95-dark and 90-light level confidence intervals) presented in

Table 1 (see notes therein) Columns 1 - circles and 2 - diamonds in the last date, separately for various dates throughout

the pandemic covering various waves of new Covid variants. Source: COVID-19 data, adjusted for population, was sourced

from the Indonesian COVID-19 Task Force. Mobile internet data was obtained from Collins Bartholomew’s GSMA Mobile

Coverage Explorer database, own calculations.
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Figure 4: Heterogeneity analysis

Notes: Figure shows the effect heterogeneity for selected area characteristics: above median share - of any education

(first panel) and university education (second), occupations with telework potential (third) and working in agriculture

(fourth), living in urban settings (fifth) and above the median level of nightlight intensity (sixth). The respective left bars

show the main coefficients, and on the right, the main plus interaction coefficients τx from Equation (3). The p-values

indicate whether the difference is significantly different from zero. See Appendix Table B.4 for coefficient estimates. Source:

COVID-19 data, adjusted for population, was sourced from the Indonesian Covid-19 Task Force, using measurements taken

as of February 18th, 2023. Mobile internet data was obtained from Collins Bartholomew’s GSMA Mobile Coverage Explorer

database, own calculations.
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Table 1: Mobile broadband access and COVID-19 cases – Main results

Dependent variables: Cumulative cases by 10T population, 18 Feb 2023

Poisson Poisson-IV

Reduced 5 km rad. Detrending
Covars form dec 2019 time area

(1) (2) (3) (4) (5)

Panel A. Cases
Internet exposure -0.660 -1.440 -0.892 -2.011
(3G) (0.257) (0.394) (0.397) (0.555)

Semi-elasticity (1sd) -0.24 -0.45 -0.31 -0.57

Lightning strike frequency (5km, Dec 2019) 7.919
(2.429)

Panel B. First stage

Lightning strike frequency (5km, Dec 2019) -4.050 -5.920 -3.203
(0.518) (0.767) (0.579)

N 454 454 454 454 454
Difference per mil. for 1sd. increase -0.96 -1.80 -1.24 -2.28
Fstat 61.05 59.54 30.56

Province FEs ✓ ✓ ✓ ✓ ✓
Demographics ✓ ✓ ✓ ✓ ✓
Health facilities ✓ ✓ ✓ ✓ ✓
Economic status ✓ ✓ ✓ ✓ ✓
Ethnic composition ✓ ✓ ✓ ✓ ✓
Labour force ✓ ✓ ✓ ✓ ✓
Weather controls ✓ ✓ ✓ ✓ ✓

Notes: The Table presents Poisson coefficients estimates from equation (1) and IV-Poisson with control function using
(2). Column 1 uses the Poisson regression conditional on the full array of fixed effects and covariates; the stepwise
inclusion and further robustness tests are presented in Appendix Table B.1. Column 2 shows the reduction estimates
based on the lightning strikes in December 2019 – contemporaneously to the internet exposure in a 5 km radius,
and Column 3 shows the corresponding IV estimates. Columns 4 and 5 present alternative IV definitions using in 4
the residualised lightning strikes conditional on the lightning strike frequency in the year 2019, and in 5 residualised
conditional on the 10 km radius frequency. The semi-elasticity is calculated for a 1 standard deviation change in
the internet measure, i.e., 0.34 - 34% exposure, via exp(τ ∗ sd(internet)) − 1. Panel B presents the IV estimates’
corresponding first stage (control function). N - number of observations, the projected difference in cases, and the
first stage F-statistic. Further robustness on the IV estimates is presented in Appendix Table B.3. Source: COVID-
19 data, adjusted for population, was sourced from the Indonesian COVID-19 Task Force, using measurements taken
as of February 18th, 2023. Mobile internet data was obtained from Collins Bartholomew’s GSMA Mobile Coverage
Explorer database, own calculations.
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Online Appendix

A Additional data information

Figure A.1: Number of Covid cases, mobile coverage, and lightning strikes - Indonesia

Notes: Figure displays cumulative Covid cases on 18. Feb 2023 (top), 3G mobile network exposure (middle), and density
of lightning strikes in December 2019 (bottom) across regencies in Indonesia. Sources: Covid data come from the Indone-
sian Covid-19 Task Force. Mobile internet data from Collins Bartholomew’s GSMA Mobile Coverage Explorer database.
Lightning strike data is from the World Wide Lightning Location Network (WWLLN), own calculations.

20



Figure A.2: Comparison of data sources - cases throughout pandemic

Notes: Figure compares the aggregated local data available (circles), not all cases can be associated with a region, i.e.,
cruise ships, tourists, etc., including these (squares), and finally, the national data aggregated by John Hopkins. Source:
COVID-19 data, adjusted for population, was sourced from the Indonesian COVID-19 Task Force. National data comes
from John Hopkins cross-national COVID file, own calculations.
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Figure A.3: Skewed cases on last day, and logged values beginning and end

Notes: The Right figure shows the raw distribution of our outcome variable for the last date available at data extraction.
The left figure depicts the log-transformed outcome at the beginning of the pandemic (23 Aug 2020) and the late stage
(18 Feb 2023)– our main outcome. Source: COVID-19 data, adjusted for population, was sourced from the Indonesian
Covid-19 Task Force, own calculations.
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Figure A.4: Lightning strikes and 3G internet

Notes: The figure shows average internet access from Indonesia’s 454 regencies (districts) aggregated to 20 percentiles.
The size of the bubbles indicates the population living in these regencies, line denoting the population-weighted linear
fit, with a correlation coefficient of -0.006 (standard error 0.001) and an R2 of 53%. Source: Mobile internet data from
Collins Bartholomew’s GSMA Mobile Coverage Explorer database. Lightning strike data is from the World Wide Lightning
Location Network (WWLLN), own calculations.
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Figure A.5: Stringency index and Google mobility

Notes: Data from the Oxford COVID-19 Government Response Tracker. Data from COVID-19 Community Mobility
Reports.
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Table B.2: Robustness tests - Poisson regression

Dependent variables: Cumulative cases by 10T population, 18 Feb 2023

Log-cases Neg. Alt. 3G measure Without Missings Impute

Base OLS Bin. Plain Imputed weights Outcomes All

(1) (2) (3) (4) (5) (6) (7) (8)

Internet exposure -0.630 -0.365 -0.630 -1.005 -0.627 -0.627
(3G) (0.255) (0.200) (0.255) (0.226) (0.255) (0.255)

Internet exposure -1.090
(3G-MCE) (0.491)

Internet exposure -1.126
(3G-MCE)-imputed (0.496)

Semi-elasticity (1sd) -0.20 -0.13 -0.20 -0.13 -0.13 -0.26 -0.20 -0.19

N 454 454 454 365 454 454 465 510
Mean dep. 0.50 0.50 0.50 0.60 0.50 0.50 0.49 0.45
SD dep. 1.45 1.45 1.45 1.60 1.45 1.45 1.43 1.37
pR2 0.53 . 0.46 0.54 0.53 0.57 0.53 .

Province FEs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Demographics ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Health facilities ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Economic status ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ethnic composition ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Labour force ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Notes: The Table additional robustness checks. Table B.1-Column (3) presents the base model, see notes therein, repre-
sented in Column (1). Column (2) presents a OLS regression on the logged outcome measure and the semi-elasticity (1sd)
which is calculated via exp(τ ∗ sd(internet))− 1. Column (3) alternatively presents negative binominal model, (4) uses the
alternative exposure measure an (Mobile Coverage Explore - MCE) are sourced directly from the network operators and
thus incur gaps in coverage, which we impute with 0 and add missing indicator in (5). Column (6) drops the population-
weighting and (7) and (8) impute areas with missing observation in the outcome (all variables, respectively) with 0. Source:
COVID-19 data, adjusted for population, was sourced from the Indonesian COVID-19 Task Force, using measurements
taken as of February 18th, 2023. Mobile internet data was obtained from Collins Bartholomew’s GSMA Mobile Coverage
Explorer database, own calculations.
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Table B.3: Robustness tests - Poisson and IV-Poisson regressions

Dependent variables: Cumulative cases by 10T population, 18 Feb 2023

IV

Internet Deviation
Exposure from

Main Population Humidity No Tower time area

(1) (2) (3) (4) (5) (6)

Panel A. Poisson
Internet exposure -0.630 -0.663 -0.592

(0.255) (0.255) (0.252)

Internet exposure (population) -0.526
(0.249)

Semi-elasticity (1sd) -0.23 -0.20 -0.24 -0.22

Panel B. IV-Poisson

Internet exposure -1.440 -1.372 -0.901 -0.812 -1.516
(0.394) (0.384) (0.407) (0.408) (0.570)

Internet exposure (population) -1.448
(0.401)

Semi-elasticity (1sd) -0.45 -0.45 -0.44 -0.31 -0.29 -0.47

N 454 454 454 454 454 454
Mean dep. 61.05 59.00 61.53 55.01 56.44 26.06
SD dep. 1.45 1.45 1.45 1.45 1.45 1.45

Province FEs ✓ ✓ ✓ ✓ ✓ ✓
Demographics ✓ ✓ ✓ ✓ ✓ ✓
Health facilities ✓ ✓ ✓ ✓ ✓ ✓
Economic status ✓ ✓ ✓ ✓ ✓ ✓
Ethnic composition ✓ ✓ ✓ ✓ ✓ ✓
Labour force ✓ ✓ ✓ ✓ ✓ ✓
Weather controls ✓ ✓ ✓ ✓ ✓ ✓
Number of towers ✓ ✓ ✓

Notes: The Table presents additional robustness. Col. (1) baseline, Col. (2) internet exposure only over populated
areas, Col. (3) rain and temperature interaction, Col. (4) controls for towers, Col. (5) adjusts the IV for deviation
from yearly average and (6) from the surrounding areas average. Source: COVID-19 data, adjusted for population,
was sourced from the Indonesian COVID-19 Task Force, using measurements taken as of February 18th, 2023. Mobile
internet data was obtained from Collins Bartholomew’s GSMA Mobile Coverage Explorer database, own calculations.
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Table B.4: Heterogeneity - Poisson-IV results

Dependent variable: Cumulative cases by 10T population, 18 Feb 2023

Some Grad. Tele-work Agriculture Econ.
educ. educ. potential exposure Urbanity status

(1) (2) (3) (4) (5) (6)

Internet exposure -1.365 -1.190 -0.876 -1.723 -1.305 -1.460
(0.425) (0.468) (0.516) (0.486) (0.428) (0.376)

Internet exposure ×1[x ≥ medx] -1.006 -0.308 -0.740 0.520 -0.326 0.238
(0.441) (0.207) (0.408) (0.282) (0.280) (0.513)

Province FEs ✓ ✓ ✓ ✓ ✓ ✓
Demographics ✓ ✓ ✓ ✓ ✓ ✓
Health facilities ✓ ✓ ✓ ✓ ✓ ✓
Economic status ✓ ✓ ✓ ✓ ✓ ✓
Ethnic composition ✓ ✓ ✓ ✓ ✓ ✓
Labour force ✓ ✓ ✓ ✓ ✓ ✓
Weather controls ✓ ✓ ✓ ✓ ✓ ✓

Notes: See Figure 4 notes. Source: COVID-19 data, adjusted for population, was sourced from the Indonesian COVID-
19 Task Force, using measurements taken as of February 18th, 2023. Mobile internet data was obtained from Collins
Bartholomew’s GSMA Mobile Coverage Explorer database, own calculations.
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